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ABSTRACT

A combined theoretical and experimental approach is developed to consider the small

amplitude free vibration characteristics of fully clamped panels under the influence of

uniform heating. Included in this study are the effects of higher modes, in-plane bound-

ary elasticity, initial imperfections and post-buckling. Comparisons between theory and

experiment reveal excellent agreement.

INTRODUCTION

In high performance aerospace applications, the dynamic behavior of plate and shell

structures subject to elevated temperatures is a primary concern. Along with damping

and loading, the natural frequencies determine the character of the transient response

while ordering the steady state response in terms of resonances. In addition, they give

insight to the relative stability of these oscillations as described by Croll and Walker

[1], i.e. negative eigenvalues imply an unstable response. Clearly, a realistic model for

computing the frequencies of these structures at high temperatures is a first step to

understanding the entire response of the system.

Early studies in the vibration characteristics of continuous structures concentrated

on simply supported buckled beams and high aspect ratio panels under uniaxial compres-

sion [2], [3], [4] and [5]. More recently, Gray and Mei [6] used a finite element analysis to

consider this problem for flat plates with either simply supported or clamped boundary

conditions.

The current paper uses Galerkin's method to develop an analytic model describing

the dynamics of fully clamped (out of plane) panels. The in-plane boundary conditions,

on the other hand, may be set to allow in-plane displacements at the edges. This is

accomplished by restricting the in-plane edge stresses to be proportional to the average

in-plane edge displacements. Also incorporated into this model are the effects of small

initial geometric imperfections. Finally, the behavior of the natural frequencies as a

function of temperature, spanning the pre and post-buckled regime, is considered. An

experimental study was also conducted to measure the natural frequencies. These results

are presented and compared to the theoretical findings.



THEORETICAL APPROACH

Equation of Motion and Solution Technique

The von Karman nonlinear partial differential equation governing the panel's behavior is

used in this study. It may be written in nondimensional form [7]

0_07 \0_07 + 0_07/j + 7 + cb-v_+ _P = 0 (1)

where w is the lateral displacement of the panel, w0 is the initial imperfection, F is

the Airy stress function, C is the system damping and AP is the external loading. In

addition, _ and r/ are the nondimensional coordinates

x y

a_

and a_ and b_ are the length and width of the panel, respectively. The associated compat-

ibility equation relating the in-plane stress resultants to the lateral displacements takes
the form

(2)

where v is Poisson's ratio. For a complete discussion of these equations see Dowell [7].

In an attempt to obtain a solution for the displacement field, a two step solution

procedure is taken which expands on the method developed by Ventres and Dowell [8].

For this procedure, a one mode initial imperfection and a nine-mode expansion for the

displacement field are assumed to take the form

w0ff,7) = a_(_)_(,)

3 3

w(_,,, ,) = _ _ a,j(_)¢,(_)%(,) (3)
i----1 j----I

where _(_) and q)j(7) are spatial beam mode shapes which satisfy the zero deflection,

zero slope boundary conditions for a fully clamped panel. Throughout the course of this

study the modes were assumed to be

@i({) = cos([/- 117r_) - cos([/+ 117r{)

%(r/) = cos([j - 1]Trr/)- cos([j + 117r7) (4)

The first step is to obtain a solution to the compatibility equation. The particular

solution is found by substituting the assumed displacement field (Equation (3)) into



Equation (2) and writing Fp as an expansion in terms of the spatial modes, q)i(¢) and

_j(r/). As a result, the particular solution does not contribute to the in-plane load at

the boundaries (since the mode shapes are zero there). The homogeneous solution, Fh,

must account for the contribution at the edges. This is accomplished by enforcing an

"average" force-displacement boundary condition. This takes the form

002 - I(_ Acdr/

0¢ 2 =- _zz 1¢, And¢ (5)

where the A's are the in-plane edge displacements, h_ is the panel thickness and the K's

are in-plane edge stiffnesses (distributed in-plane springs). This formulation, therefore,

allows for finite in-plane displacements at the boundaries. A detailed description of the

procedure for determining the Airy stress function, F, is provided in [9].

The second step in the solution procedure is to carry out Galerkin's method on

the panel equation of motion. This involves substituting the expressions for w and wo,

Equation (3), and the Airy stress function, F, into the partial differential equation of

motion, Equation (1). The resulting expression is then multiplied by the modal functions,

_r(¢) and (I),(r/), and integrated over the domain. This integration removes all spatial

dependence and leaves the following set of equations

[M]_ + C[M]_: + f(_) = fi (6)

where [M] is a coupled mass matrix, C is a scalar damping term (assuming proportional

damping), f is a nonlinear stiffness term, fi is an excitation vector and 2" is a vector

containing the nine modal coefficients, aij. This is a set of nine coupled nonlinear ordinary

differential equations governing the modal coefficients.

Natural Frequencies

First, consider the natural frequencies at the ambient temperature. After omitting the

damping and excitation terms in Equation (6), the resulting set of equations are linearized

by expanding the nonlinear stiffness in a Taylor series about the static equilibrium vector,

xeq = 0, and discarding higher order terms [10]. The resulting system of equations take
the form

[M]_ = -[J]_ (7)

where [d] is the Jacobian representing the linearized stiffness. The elements of [d] are

given by

J,j - Of' I' (s)
Oxj _q

From Equations (7) and (8), the standard dynamic eigenvalue problem results [11]. The

nine eigenvalues, associated with the equilibrium configuration, are then computed nu-

merically.
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Figure 1: Typical flat plate (--) and initially imperfect plate (- -) responses to thermal

loads and comparison with Finite Element Results (*).

The temperature is then incremented and the new equilibrium vector is found

by setting the entire nonlinear stiffness to zero. This set of nonlinear coupled algebraic

equations is then solved with a Newton-Raphson algorithm using the equilibrium con-

figuration at the previous temperature as an initial guess vector. Next, the stiffness is

linearized about the new equilibrium state and a new set of eigenvalues are computed for

this temperature and so on.

The one deviation in this scheme occurs for an initially flat panel (i.e. no initial

imperfection). Here, the above procedure is carried out until one eigenvalue becomes

negative. This indicates a loss of stability of the flat plate equilibrium configuration [1].

As a result, the new stable equilibrium position must be found using the Newton-Raphson

scheme. This is accomplished by perturbing the initial guess vector in the direction

of the unstable eigenvector (the eigenvector associated with the negative eigenvalue),

This allows the Newton-Raphson routine to find the non-zero equilibrium configuration

about which the system will be linearized in order to obtain the post-buckled natural

frequencies.

The panel under consideration had dimensions of 15in x 12in x 0.125in (aspect

ratio = 1.25) and was made of AISI 321 stainless steel. The material properties of this

steel include E = 28x106psi, u = 0.33, c_ = 9.6x10 -6 (in/in)/°F and p = 0.291b/in 3.

A typical frequency result displaying the behavior of the fundamental mode is shown

in Figure la. For the perfectly flat panel, the fiequencies decrease until instability is

encountered at a change in temperature of AT_ _155.25 °F after which the frequencies

begin to rise again. The loss of stability of the flat plate equilibrium position at this

critical temperature is clearly displayed by Figure lb which shows the center deflection as



a function of temperature. Also shown are the "stiffening" effects of initial imperfections.

This case shows a panel with an initial center deflection of 0.038in (see AT = 0). Because

the system has a finite displacement even below ATcr (as displayed in Figure lb), there is

never a distinct bifurcation, as in the flat plate configuration, and the eigenvalues never

become negative [12]. This is properly displayed by Figure la.

In addition, a finite element package was used to independently verify these results

at discrete temperatures for the initially flat panel. See Figure la and lb.

EXPERIMENTAL APPROACH

Facilities

The experimental portion of this work was conducted in the Thermal Acoustic Fatigue

Apparatus (TAFA) [13] at NASA Langley. TAFA is a progressive wave tube facility for

testing small panels subject to thermal and/or acoustic excitations.

The acoustic excitation in TAFA is provided by a set of air modulators coupled by

an exponential horn to a 6ft x 6ft x lft test section. Within the test section, specimens are

mounted on a side wall and, thus, are subject to a grazing acoustic load. The system is

capable of providing both sinusoidal and broadband excitation in the range of 40-500Hz.

Overall sound pressure levels between 125dB and 165dB can be generated in the TAFA

facility.

Directly across the chamber from the test specimen is an 18in x 28in x lin thick

quartz window behind which are a set of ten quartz lamp units used to provide thermal

loads to the panel. Using all 10 lamps, this configuration is capable of generating a

maximum heat flux of 45 BTU/(ft 2 sec). Thin panels can be heated to over 2000 °F.

In addition, a low velocity mean flow is employed to minimize natural convection and

produce a more spatially uniform temperature distribution [13].

The mounting frame, attached to the side wall of the test section, was designed

specifically for this experiment and very nearly provided the zero deflection, zero slope

boundary conditions of an ideally clamped panel. The frame design was complicated

by the fact that both frame and panel were made of the same material. This would

result in an unavoidable and undesirable expansion of the frame along with the panel

during heating. Several steps were taken to minimize this effect. Insulating blanket

material (Min-K) was placed on the inside wall of the test section surrounding the panel

to minimize thermal conduction through the wall to the support frame. Zircar, a ceramic

insulation material, was placed between the test panel and the frame to help minimize

conduction between the panel and the frame. Finally, a water channel was mounted on

the inside of the frame to provide continuous cooling in the vicinity of the largest thermal

radiation from the panel. During the course of the experiments, the temperature of the

water cooled facility was monitored using thermocouples and, although the frame did

heat up, the safeguards taken seemed to prevent appreciable heating. For instance, in

one series of tests, the panel was heated to 315 °F above ambient while the temperature

of the water cooled system only went up about 10 °F.

The test panel was instrumented with several thermocouples to ascertain the

temperature distribution and strain gages were used to determine the dynamic response.



Temperaturedata from the paneland mounting framewererecordedcontinuouslyon a
computer. By adjustingthe lampbankenergydistribution, a nearlyuniform temperature
field wasobtained on the panel.

Dynamic strain measurementswererecordedon a multi-channelspectrum ana-
lyzer. Frequencyresponsefunctionsweregeneratedbetweenthestrainsand the acoustic
load, asmeasuredby a pair of microphones,to determinethe resonantfrequencies.In
addition to the strain gages,a scanninglaservibrometer"+-asusedto determinethe out-
of-plane RMS velocity distribution over the panel [14]. The laser vibrometer gives a

measure of the instantaneous velocity response at a point by measuring the doppler shift

between the reference beam and reflected beam. Spatial information may be determined

by directing the laser spot across many points over the panel using a set of positioning

mirrors. A PC based acquisition system [14] was used to move the beam sequentially

over a series of "grid points" on the panel. The RMS velocity is computed at each point

and stored on the PC. By exciting the structure at one of its resonances, a rectified

distribution resembling the mode shape was obtained.

Experimental Procedure

Beginning at the ambient temperature, a low level, broadband acoustic input was used

to excite the panel. The frequency response functions were generated and used to iden-

tify resonant frequencies. Based on this information alone, it is impossible to associate

a given frequency with it's mode shape. This problem is complicated by the fact that

non-panel frequencies will also be present in the response. Indeed, the test section wall

has resonances which appear in the frequency response. To resolve this difficulty each

frequency peak was considered individually. Using a narrow band acoustic excitation at

the i th resonant frequency, the panel was forced to oscillate primarily in the i th mode. A

laser vibrometer scan was then made to show the rms velocity field. From this velocity

field, the mode shape related to that frequency was evident (since velocity and displace-

ment are out of phase by 90°). Two typical scans are shown in Figure 2a and 2b where

the (2,1) and the (3,2) modes, respectively, are clearly visible.

Once all the peaks had been identified, the temperature was increased and the

above procedure was carried out again. By identifying each frequency and its correspond-

ing mode shape, the response as a function of temperature, can be inferred with a high

degree of confidence.

RESULTS

The following results were obtained using a panel with the same dimensions and

material properties as described previously. At the time of the experiment, the ambient

temperature was 67.5 °F,

Figure 3a presents the experimental frequency results as a function of temperature.

It is evident that none of the experimental frequencies come particularly close to zero.

This is not due to the less than perfectly clamped out of plane boundary conditions.

While this effect would tend to decrease the frequencies at a given temperature, it would

not change the character of the results. Therefore, the fact that the experimental



a)

b)

Figure 2: The rms velocity field as measured using the Vibration Pattern Imager. a) the

(2,a) mode and b) the (3,2) mode.
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Pigure 3: Natural frequencies of the panel as a function of temperature. Designations on

the right give an indication of the dominant mode• a) experimental results, b) theoretical

results: initially flat (--) and imperfect (- -).



frequenciesdo not drop to zero implies the presenceof an initial imperfection, which
would be expectedin the presentsystem.

Figure 3b showsthe theoreticalfrequency-temperatureresults for the flat plate
and the initially imperfectpanel. Theseresultsweredeterminedusing a finite in-plane
edgestiffness,whosevaluewasbasedon matchingthe theoreticalcritical buckling tem-
perature with experimentalobservations, Experimentally, the finite edgestiffnessis,
most likely, due to the inability of the ceramicinsulation material to prevent in-plane
displacements.Basedon this figure, the flat panelbucklesin the (1,1)modeat a critical
temperature of ATcr ,_155.25 °F. The results for the imperfect panel are based on the

assumption that the imperfection is in the shape of the (1,1) mode (see Equation (3))

with an amplitude an = 0.038. This corresponds to an initial deflection of 0.019in at the

center of the plate (15% of the thickness).

A comparison of the experimental and theoretical results is revealing. Quantita-

tively, the (1,1) frequencies are in good agreement. This agreement becomes increasingly

less impressive for the higher frequencies. This is entirely expected in a study with a

limited number of modes. Including additional modes would improve the agreement be-

tween the theoretical and experimental results for the higher modes shown in Figure 3.

Quantitative comparisons from these results should be limited to the first three or four

modes.

The qualitative similarities between theory and experiment for all the modes is

evident. Both Figure 3a and 3b show a significant gap between the (2,1) and (1,2) fre-

quency loci. Furthermore, the crossing of the (3,1) and (2,2) loci occurs experimentally

near a temperature increase of 142.5 °F and is predicted by theory albeit at a lower tem-

perature (AT =115 °F). Clearly, the theoretical model contains the essential dynamics

which are responsible for the behavior of the frequencies as a function of temperature.

Based on these figures, it might appear that there are no appreciable variations

in the natural frequencies with temperature. However, there are, and to highlight this

fact Figure 4 compares the experimental and theoretical results for the (1,1) mode on

a more reasonable frequency scale. There is about a 20% variation in the fundamental

frequency with temperature.

DISCUSSION

This paper presented a combined theoretical and experimental study into the

behavior of the natural frequencies of a panel subject to thermal loads.

Comparisons between theory and experiment show reasonable quantitative agree-

ment between the lower eigenvalues. The higher eigenvalues, on the other hand, differ

more noticably. This is partly attributed to the relatively few modes used in the course

of the theoretical analysis. However, there is excellent qualitative agreement, even in the

higher modes, implying that the model captured the relevant dynamics of the problem.

The differences between the experimental and numerical results are partly a re-

flection of our inability to accurately model the boundary conditions of the experimental

setup. Considerable effort was spent determining the in-plane boundary stiffness and the

initial imperfection. Because K_ and K, were based on static information over a range
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Figure 4: Comparison of the theoretical and experimental frequencies (o) for the
fundamental mode.

of temperatures, the frequency-temperature results are not expected to match exactly at

any given AT. Furthermore, because the analysis uses an "average" force-displacement

condition on the edges, local boundary effects, which may significantly influence the pan-

els dynamic behavior, are not considered. Also contributing to these differences are such

factors as prestress in the panel (induced during clamping), nonuniform temperature dis-

tributions and variations in temperature through the panels thickness. This formulation

does have several advantages over, say, a finite element analysis. Because this study

develops the equations of motion for the panel (Equation (1)) using analytic expressions,

additional insight may be gained into the effects of such terms as the temperature rise,

AT, the in-plane boundary stiffnesses, K_, If n, the initial imperfection (both shape and

magnitude) and so on. Also, the Galerkin technique is an efficient (computationally

fast) method for computing the natural frequencies particularly for small temperature

increments (see Figure la and lb). Finally, this formulation may easily be extended to

consider other aspects of the dynamic problem, most notably the forced case. In addition,

the results of this study provide important information about a portion of the parameter

space, (T,w), for the forced problem.
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